Si la energía oscura no se diluye, el universo se expanderá para siempre. Las galaxias distantes desaparecerán de la vista. [2]
Aquellas que no colapsen en agujeros negros, se evaporarán en la oscuridad circundante como un charco se seca en un día caluroso. Lo que quedará es un universo que, para todo intento y propósito, será vacío. Entonces, y sólo entonces, el universo habrá verdaderamente maximizado su entropía. El universo estará en equilibrio, y nada más ocurrirá.

Puede parecer raro que el espacio vacío tenga una entropía tan enorme. Suena como decir que el escritorio más desorganizado en el mundo es un escritorio completamente vacío. La entropía requiere microestados y, a primera vista, el espacio vacío no tiene ninguno. Sin embargo, el espacio vacío tiene un montón de microestados - los microestados cuántico-gravitacionales de la fábrica del espacio. No sabemos aún qué son exactamente estos estados, nada más sabemos que los microestados dan cuenta de la entropía de un agujero negro, pero sí sabemos que en un universo en aceleración la entropía en el volumen observable se acerca a un valor constante proporcional al área de su frontera. Es una cantidad verdaderamente enorme de entropía, mucho más que la materia en ese volumen.

Pasado vs. Futuro
La característica más increíble de esta historia es la pronunciada diferencia entre el pasado y el futuro. El universo comienza en un estado de muy baja entropía: partículas empaquetadas juntas de forma suave. Evoluciona a un estado de entropía medio: la grumosa distribución de estrellas y galaxias que vemos a nuestro alrededor actualmente. Finalmente alcanza un estado de alta entropía: el espacio casi vacío, presentando sólo alguna ocasional partícula de baja energía.

¿Porqué son el pasado y el futuro tan diferentes? No es suficiente proponer simplemente una teoría de condiciones iniciales - una razón de porqué el universo comenzó con baja entropía. Como el filósofo Huw Price de la Universidad de Sydney apuntó, cualquier razonamiento que aplique a las condiciones iniciales debería también aplicar a las condiciones finales, o de lo contrario seremos culpables de asumir la misma cosa que estábamos tratando de probar - que el pasado fue especial. O bien debemos tomar la profunda asimetría del tiempo como una abrupta característica del universo que escapa a la explicación, o debemos indagar más profundamente en el funcionamiento del espacio y el tiempo.

Muchos cosmólogos han intentado atribuir la asimetría del tiempo al proceso de la inflación cosmológica. La inflación es una atractiva explicación para muchas características básicas del universo. De acuerdo a esta idea, el universo muy temprano (o al menos una parte de éste) estaba lleno no de partículas sino con una forma temporaria de energía oscura, cuya densidad era enormemente mayor que la energía oscura que observamos hoy. Esta energía causó la expansión del universo a una tasa de aceleración fantástica, luego de lo cual decayó hacia materia y radiación, dejando detrás un pequeño resto de energía oscura que se está haciendo relevante otra vez en la actualidad. El resto de la historia del Big Bang, del suave gas primordial a las galaxias y más allá, se sigue simplemente.

La motivación original para la inflación fue proveer una robusta explicación para las afinadas condiciones en el universo temprano -en particular, la notable uniformidad de la densidad de la materia en regiones ampliamente separadas. La aceleración generada por la energía oscura temporal suavizó al universo casi perfectamente. La anterior distribución de materia y energía es irrelevante; una vez que la inflación comenzó, removió cualquier trazo de condiciones preexistentes, dejándonos con un caliente, denso y suave universo temprano.

El paradigma inflacionario ha sido exitoso en muchas formas. Su predicción de pequeñas desviaciones de la uniformidad perfecta está de acuerdo con las observaciones de variaciones de densidad en el universo. Como una explicación para la asimetría del tiempo, sin embargo, los cosmólogos la consideran cada vez más un poco engañosa, por razones que Roger Penrose de la Universidad de Oxford y otros han enfatizado. Para que el proceso trabaje como se desea, la ultradensa energía oscura debió comenzar en una configuración específica. De hecho, su entropía debió ser fantásticamente menor que la entropía del gas caliente y denso en el que decayó. Esto implica que la inflación no resolvió verdaderamente nada: “explica” un estado de inusual baja entropía (un caliente, denso, uniforme gas) al invocar un estado anterior de aún menor entropía (una suave porción de espacio dominado por energía oscura ultradensa). Simplemente empuja el rompecabezas un paso atrás:¿Porqué la inflación ocurrió alguna vez?

Una de las razones por la que muchos cosmólogos invocan la inflación como una explicación de la asimetría del tiempo es que la configuración inicial de la energía oscura no parece tan improbable. Todo el tiempo de la inflación, nuestro universo observable fue menos de un centímetro de lado. Intuitivamente, semejante pequeña región no tiene muchos microestados, por lo que no es tan improbable para el universo tropezar por accidente en un microestado correspondiente a la inflación.
Desafortunadamente, esta intuición es engañosa. El universo temprano, incluso si es de sólo un centímetro de lado, tiene exactamente el mismo número de microestados que todo el universo observable actual. De acuerdo a las reglas de la mecánica cuántica, el número total de microestados en un sistema nunca cambia (La entropía crece no porque el número de microestados lo hace sino porque el sistema naturalemente termina en el más genérico macroestado posible). De hecho, el universo temprano es el mismo sistema físico que el universo tardío. Uno evoluciona hacia el otro, después de todo.

Entre todas las diferentes maneras que los microestados del universo pueden ordenarse, sólo una increíblemente pequeña fracción corresponde a una configuración suave de ultradensa energía oscura en un pequeño volumen. Las condiciones necesarias para que la inflación comience son extremadamente especializadas y así describe una configuración de muy baja entropía. Si Ud. debe elegir configuraciones del universo al azar, sería muy improbable dar con las condiciones para iniciar la inflación. La inflación no explica, por sí misma, porqué el universo temprano tiene una baja entropía, simplemente lo asume desde el comienzo.

Un Universo Simétrico en el Tiempo
Así, la inflación no ayuda a explicar porqué el pasado es diferente del futuro. Una valiente pero simple estrategia es decir: quizás el pasado muy lejano no sea diferente del futuro, después de todo. Quizás el pasado distante, como el futuro, es en realidad un estado de alta entropía. Si es así, el caliente, denso estado que hemos estado llamando “el universo temprano” no es en realidad el verdadero comienzo del universo sino un estado transicional entre estados de su historia.

Algunos cosmólogos imaginan que el universo pasó por un “rebote”. Antes de este evento, el espacio estaba en contracción, pero en vez de chocar en un punto de infinita densidad, nuevos principios físicos -gravedad cuántica, dimensiones extras, teoría de cuerdas o algún otro exótico fenómeno- lo salvó en el último minuto y el universo salió hacia el otro lado en lo que ahora percibimos como el big bang. Aunque intrigante, las cosmologías “del rebote” no explican la flecha del tiempo. O bien la entropía estaba incrementándose al acercarse el universo previo al choque (crunch) -en cuyo caso la flecha del tiempo se extiende infinitamente lejos en el pasado- o la entropía estaba decreciendo, en cuyo caso una no natural condición de baja entropía ocurrió en la mitad de la historia del universo (en el rebote). De cualquier manera, hemos dejado de contestar porqué la entropía cerca de lo que llamamos big bang fue pequeña. (NdA:Ver ¿Qué pasó antes del Big Bang?)

En cambio, supongamos que el universo comenzó en un estado de gran entropía, que es el estado más natural. Un buen candidado para semejante estado es un espacio vacío. Como cualquier estado de alta entropía, la tendencia del espacio vacío permanecerá así, sin cambios. Por lo que el problema es:¿Cómo obtenemos nuestro universo actual de un desolado y tranquilo espacio-tiempo? El secreto podría residir en la existencia de la energía oscura.

En presencia de energía oscura, el espacio vacío no es completamente vacío. Fluctuaciones de campos cuánticos dan lugar a una temperatura muy baja - enormemente más baja que la temperatura del universo actual pero no exactamente el cero absoluto. Todos los campos cuánticos experimentan fluctuaciones térmicas en ese universo. Eso significa que no es perfectamente inactivo; si esperamos lo suficiente, partículas individuales e inclusive sustanciales colecciones de partículas fluctuarán hacia su existencia, sólo para desaparecer otra vez en el vacío. (Estas son partículas reales, en oposición a las partículas “virtuales” de corta vida que el espacio vacío contiene incluso en ausencia de energía oscura).

Entre las cosas que pueden fluctuar hacia la existencia están las pequeñas regiones de energía oscura ultradensa. Si las condiciones son las correctas, esa región puede sufrir la inflación y cerrarse para formar un universo separado por su cuenta - un universo bebé. Nuestro universo podría ser el hijo de otro universo.

Superficialmente, este escenario tiene un parecido con la inflación estándar. La diferencia es la naturaleza de las condiciones iniciales. En la forma estándar, la región surge en un enfervorizante universo fluctuante, en el que la mayor parte de las fluctuaciones produjeron nada parecido a la inflación. Sería mucho más probable para el universo, fluctuar directamente en un big bang caliente, salteándose el estadío inflacionario completamente. De hecho, en cuanto concierne a la entropía, sería mucho más probable para el universo fluctuar directamente hacia la configuración que vemos hoy, sorteando los pasados 14 mil millones de años de evolución cósmica.

En nuestro nuevo escenario, el universo preexistente no fue nunca fluctuante al azar; estaba en un estado muy específico: espacio vacío. Lo que esta teoría afirma - y que debe probarse- es que la manera más probable de crear universos como el nuestro de un estado preexistente es ir a través de un período de inflación, en vez de fluctuar directamente. Nuestro univeso, en otras palabras, es una fluctuante pero no uno azaroso.

Opmeit Led Ahcelf
Este escenario, propuesto en 2004 por Jennifer Chen de la Universidad de Chicago y yo, provee una provocativa solución al origen de la asimetría en nuestro universo observable: vemos sólo una pequeña parte de toda la imagen, y ese campo mayor es simétrico en el tiempo. La entropía puede crecer sin límite a través de la creación de nuevos univesos.

Aún mejor, esta historia puede ser contada hacia atrás y hacia adelante en el tiempo. Imagine que empezamos con espacio vacío en cierto momento particular y lo vemos evolucionar hacia el futuro y hacia el pasado. (Va hacia ambos lados porque no estamos presumiendo una unidireccional flecha del tiempo). Los bebés universos fluctúan hacia la existencia en ambas direcciones del tiempo, finalmente vaciándose y dando a luz sus propios bebés. A escalas ultragrandes, semejante multiverso se vería estadísticamente simétrico con respecto al tiempo - ambos, pasado y futuro, tendrían nuevos universos fluctuando hacia la vida y proliferando. Cada uno de ellos experimentaría una flecha del tiempo, pero la mitad tendrían una flecha que estaría en reversa con respecto a la flecha de otros.

La idea de un universo con una flecha del tiempo hacia atrás podría parecer alarmante. Si conociéramos a alguien de un univeso así, ¿se acordarían del futuro? Felizmente, no hay peligro para tal encuentro. En el escenario que estamos describiendo, los únicos lugares donde el tiempo parece ir hacia atrás están enormemente lejos en nuestro pasado, mucho antes del big bang. En medio hay una amplia expansión del universo en la que el tiempo no parece correr en absoluto; casi no existe materia y la entropía no evoluciona. Cualquier ser que viva en una de estas regiones de tiempo revertido no nacería viejo y moriría joven, ni nada fuero de lo ordinario. Para ellos, el tiempo fluiría en una forma convencional. Sería sólo al comparar su universo con el nuestro que algo parecería fuera de lo normal: nuestro pasado es su futuro y viceversa. Pero semejante comparación es puramente hipotética, ya que no podemos llegar allí y ellos no pueden llegar aquí.

Por ahora, el jurado está fuera de nuestro modelo. Los cosmólogos han contemplado la idea de bebés universos por muchos años, pero no entendemos el proceso de nacimiento. Si las fluctuaciones cuánticas pudieran crear nuevos universos, también podrían crear muchas otras cosas - por ejemplo, una galaxia entera. Para que un escenario como el nuestro explique el universo que vemos, debe predecir que la mayoría de las galaxias surgen en el período posterior al big bang - como eventos y no sólo fluctuaciones en otro universo vacío. Si no, nuestro universo parecería muy anormal.

Pero la lección para llevarnos a casa no es un escenario particular para la estructura del espacio-tiempo a ultragrandes escalas. Es la idea que una increíble característica de nuestro cosmos observable - la flecha del tiempo, surgiendo de condiciones de muy baja entropía en el universo temprano- puede proveernos pistas acerca de la naturaleza del universo no-observable.

Como se mencionó al principio de este artículo, es bueno tener una imagen que concuerde con los datos, pero los cosmólogos quieren más que eso: buscamos un entendimiento a las leyes de la naturaleza y de nuestro particular univeso en la que todo tenga sentido para nosotros. No queremos ser reducidos a aceptar las extrañas características de nuestro universo como hechos brutos. La dramática asimetría del tiempo de nuestro cosmos observable parece ofrecernos una pista sobre algo más profundo -un clave hacia el funcionamiento esencial del espacio y el tiemp. Nuestra tarea como físicos es usar esta y otras pistas para armar una poderosa imagen.

Si el universo observable fuera todo lo que existe, sería casi imposible dar cuenta de la flecha del tiempo en una forma natural. pero si el universo a nuestro alrededor es un pequeña parte de una imagen mucho mayor, nuevas posibilidades se presentan. Podemos concebir nuestro porción de universo como una pieza de un rompecabezas, parte de la tendencia de un sistema mayor para incrementar su entropía sin límites en el pasado lejano y el futuro distante. Parafraseando al físico Edward Tyron, el big bang es fácil de entender si no es el comienzo de todo sino una de esas cosas que ocurren de tiempo en tiempo.

Otros investigadores están trabajando en ideas similares, y más y más cosmólogos están tomando seriamente el problema que genera la flecha del tiempo. Es suficientemente fácil ver la flecha -todo lo que debe hacer es mezclar un poco de leche a su café. Mientras lo revuelve, puede contemplar cómo es simple acto puede ser rastreado todo el camino hacia el comienzo de nuestro universo observable y quizás más allá.

La historia del Universo Observable
Aquí hay una línea de tiempo de los eventos importantes en la historia de nuestro universo observable, de acuerdo a la cosmología convencional:

-El espacio está vacío, caracterizándose sólo por una pequeña cantidad de energía de vacío y una ocasional partícula de larga longitud de onda formada vía fluctuaciones de los campos cuánticos que tiñen el espacio.

-Una radiación de alta intensidad barre de pronto el universo, en una forma esférica enfocándose en un punto en el espacio. Cuando la radiación colecta todo en ese punto, un “agujero blanco” se formó.

-El agujero blanco gradualmente crece a miles de millones de veces la masa del sol, a través de la acreción de radiación adicional de la decreciente temperatura.

-Otros agujeros blancos comienzan a aproximarse desde miles de millones de años luz. Forman una distribución homogénea, moviéndose lentamente uno hacia el otro.

-Los agujeros blancos comienzan a perder masa al eyectar gas, polvo y radiación al entorno circundante.

-El gas y polvo ocasionalmente implosionan para formar estrellas, que se esparcen hasta galaxias alrededor de los agujeros blancos.

-Como los agujeros blancos, las estrellas reciben radiación. Usan la energía de esta radiación para convertir elementos pesados en otros más livianos.

Las estrellas se dispersan en gas, que gradualmente se suaviza a través del espacio; la materia como un todo continúa moviéndose junta y crece más densamente.

-El universo se vuelve cada vez más caliente y denso, finalmente contrayéndose hacia un big crunch.

Es innecesario decir que esta no es la forma usual de describir la historia de nuestro universo. Es la secuencia convencional de eventos contados hacia atrás en el tiempo. Pero las leyes de la física trabajan igualmente bien hacia atrás y hacia adelante en el tiempo. Así, esta secuencia es tan legítima como la usual. Sirve al propósito de llevar a casa cuán improbable es realmente la historia de nuestro universo observable.
S.M.C.

Preguntas frecuentes de La Flecha del Tiempo
Si la entropía siempre se incrementa, ¿cómo se forman los objetos de baja entropía?
La ley de entropía se aplica a sistemas cerrados. No prohibe el decrecimiento de la entropía en sistemas abiertos, incluyendo gallinas. Una gallina toma energía y realiza un gran esfuerzo en producir un huevo.

¿Ningún proceso de partículas tiene una flecha del tiempo?
El decaimiento de algunas partículas elementales, como los kaons neutrales, ocurren más frecuentemente en una dirección del tiempo que en otra. (Los físicos no necesitan viajar atrás en el tiempo para observar esta asimetría, ellos infieren esto de experimentos sobre propiedades de las partículas). Pero estos procesos son reversibles, a diferencia del crecimiento de la entropía, por lo que no explican la flecha del tiempo. El modelo estándar de la física de partículas no parece ser de ayuda en explicar la baja entropía del universo temprano.

¿La mecánica cuántica tiene una flecha del tiempo?
De acuerdo a la interpretación estándar de la mecánica cuántica, la medición de un sistema causa una función de onda que “colapsa”, un proceso que es asimétrico en el tiempo. Pero la razón de que las funciones de onda colapsen pero nunca “des-colapsen” es la misma razón por la que los huevos se rompen y no se “des-rompen”, porque el colapso incrementa la entropía del universo. La mecánica cuántica no explica porqué la entropía fue baja en primer lugar.

¿Porqué recordamos el pasado y no el futuro?
Formar una memoria confiable requiere que el pasado esté ordenado - esto es, tenga una baja entropía. Si la entropía es alta, casi todos los “recuerdos” serían fluctuaciones al azar, completamente desvinculadas de lo que realmente pasó en el pasado.

¿Es testeable la teoría del multiverso?
La idea de que el univeso se extiende mucho más allá de lo que vemos no es realmente una teoría - es una predicción hecha por ciertas teorías de la mecánica cuántica y gravedad. La verdad es que es una predición difícil de probar. Pero todas las teorías de la física nos fuerzan a ir más allá de lo que podemos ver directamente. Por ejemplo, nuestro mejor modelo actual para el origen de la estructura cósmica, el escenario inflacionario, requiere que entendamos las condiciones incluso antes de la inflación.